Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte, ${ }^{\text {a }}$

Andreas Rivas Nass ${ }^{b}$ and

A. Stephen K. Hashmi ${ }^{\text {b }}$ *

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in solvent or counterion
R factor $=0.059$
$w R$ factor $=0.156$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis\{ μ-dimethyl 1-[1-methoxycarbonyl-3-(methoxy-oxalyl)-2-methylpropenyl]-3,3-dimethylcyclopropane-1,2-dicarboxylato(2-) \}bis[(triphenylphosphine)palladium(II)] acetone solvate

The title compound, $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, features a centrosymmetric dimer and an acetone molecule disordered about a centre of inversion. The Pd coordination is almost square-planar. The central eight-membered ring containing Pd and O atoms adopts a chair conformation, and the six-membered ring containing Pd adopts a half-chair conformation.

Comment

5-Pallada-anti-tricyclo[4.1.0.0 ${ }^{2,4}$]heptanes are an interesting class of chiral organopalladium compounds which are usually stable in water and air (Hashmi, 2002). Several complexes of these compounds have been prepared (Hashmi, Naumann, Probst et al., 1997; Hashmi, Naumann \& Bats, 1997; Hashmi, Naumann \& Bolte, 1998; Hashmi, Naumann, Bolte \& Rivas Nass, 1998; Hashmi, Bats et al., 1998) and their reactivity has been studied (Hashmi et al., 1999). We have now tried to prepare the complex with the simple triphenylphosphine ligand, which immediately led to a precipitate with low solubility. Efforts to recrystallize this precipitate from chloroform in air and the presence of water at 321 K led to the title compound, a unique dimer of a new organometallic framework in which one of the cyclopropyl rings of the starting material was opened and oxidized. Each of the palladium centres is coordinated by only one phosphine ligand, and the other coordination site is occupied by the carbonyl-O atom of an ester group of the other palladium-organic unit. The organometallic units are still chiral; two enantiomers form the centrosymmetric dimer.

(I)

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal

Received 7 November 2005 Accepted 16 November 2005 Online 23 November 2005

Figure 1
A perspective view of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the disordered acetone molecule have been omitted for clarity. The labelled atoms indicate the asymmetric unit; the complete molecule is generated by a centre of inversion with the symmetry operator $(1-x$, $1-y, 1-z$).
(Cambridge Crystallographic Database, Version 1.6 plus three updates; $M O G U L$ Version 1.0; Allen, 2002). The molecule is located on a centre of symmetry. The Pd atoms show an almost ideal square-planar coordination (r.m.s. deviation for Pd and its four ligands $0.061 \AA$; Table 1). The central eight-membered ring adopts a chair conformation with O11, C11 and their symmetry equivalents in a common plane and the $\mathrm{Pd} 1-\mathrm{C} 1$ units and their symmetry equivalents deviating from this plane. The six-membered rings containing Pd adopt a halfchair conformation with $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 in a common plane (r.m.s. deviation $0.01 \AA$) and Pd1 and C5 deviating by 1.856 (8) and 0.92 (1) \AA from this plane, respectively. The three ester residues adopt the cis conformation typical for this group.

Experimental

A solution of triphenylphosphine (94.4 mg) in acetone (1 ml) was added to a solution of tetramethyl-5-pallada-anti-tricyclo[4.1.0.0 ${ }^{2,4}$]heptane (85.3 mg) in acetone (1 ml) in an open flask. Immediately, a new product precipitated. Acetone (3 ml) and then chloroform (5 ml) were added while heating the flask in an oil bath to 321 K . The heating was stopped, but the flask was left in the oil bath for a slow temperature decrease. Overnight, crystals of the title compound were formed.

Crystal data

$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	$Z=1$
$M_{r}=1560.13$	$D_{x}=1.490 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.7819(3) \AA$	Cell parameters from 6723
$b=13.3852(3) \AA$	reflections
$c=14.4710(4) \AA$	$\theta=3.5-24.2^{\circ}$
$\alpha=98.446(1)^{\circ}$	$\mu=0.64 \mathrm{~mm}^{-1}$
$\beta=102.790(1)^{\circ}$	$T=173(2) \mathrm{K}$
$\gamma=105.392(1)^{\circ}$	Plate, red
$V=1738.31(8) \AA^{\circ}$	$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Siemens SMART CCD three-circle diffractometer
ω scans
Absorption correction: multi-scan $S A D A B S$ (Sheldrick, 1996)
$T_{\text {min }}=0.832, T_{\text {max }}=0.939$
20136 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.156$
$S=1.01$
6752 reflections
451 parameters

6752 independent reflections 3804 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.082$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-16 \rightarrow 16$
$l=-18 \rightarrow 17$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0747 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.74 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1-C5	$2.041(6)$	$\mathrm{Pd} 1-\mathrm{C} 1$	$2.257(5)$
Pd1-O11	$2.144(4)$	$\mathrm{Pd} 1-\mathrm{P} 1$	$2.3228(16)$
C5-Pd1-O11			
C5-Pd1-C1	$171.4(2)$	$\mathrm{C} 5-\mathrm{Pd} 1-\mathrm{P} 1$	$93.60(16)$
O11 $-\mathrm{Pd} 1-\mathrm{C} 1$	$83.4(2)$	$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{P} 1$	$87.95(10)$
Symmetry code: $(\mathrm{i})-x+1,-y+1,-z+1$.		$172.04(16)$	

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C113-H113 $\cdots \mathrm{O} 1 L$	0.95	2.53	$3.275(14)$	135
C123-H123 \cdots O1 $L^{\text {ii }}$	0.95	2.62	$3.452(13)$	147

Symmetry code: (ii) $-x+1,-y+1,-z+2$.
H atoms were located in a difference electron density map but refined with fixed individual displacement parameters $[U(\mathrm{H})=1.2$ $U_{\text {eq }}(\mathrm{C})$ or $\mathrm{U}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$] using a riding model, with $\mathrm{C}-\mathrm{H}=$ 0.95 and 0.98 A for $\mathrm{C}_{\text {aromatic }}-\mathrm{H}$ and $\mathrm{C}_{\text {methyl }}-\mathrm{H}$, respectively. The acetone molecule is disordered about a centre of inversion. Thus, the carbonyl O and C atoms and the H atoms of the methyl group were refined with a site occupation factor of 0.5 to reflect the two positions of this molecule.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Hashmi, A. S. K. (2002). Trends Organomet. Chem. 4, 33-45.
Hashmi, A. S. K., Bats, J. W., Naumann, F., \& Berger, B. (1998). Eur. J. Inorg. Chem. pp. 1987-1990.
Hashmi, A. S. K., Naumann, F. \& Bats, J. W. (1997). Chem. Ber. Recl, 130, 1457-1459.

metal-organic papers

Hashmi, A. S. K., Naumann, F. \& Bolte, M. (1998). Organometallics, 17, 23852387.

Hashmi, A. S. K., Naumann, F., Bolte, M. \& Rivas Nass, A. (1998). J. Prakt. Chem. 340, 240-246
Hashmi, A. S. K., Naumann, F., Probst, R. \& Bats, J. W. (1997). Angew. Chem. Int. Ed. 36, 104-106.
Hashmi, A. S. K., Naumann, F., Rivas Nass, A., Degen, A., Bolte, M. \& Bats, J. W. (1999). Chem. Eur. J. 5, 2836-2844.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

